STRUCTURE OF ATOM

Isobars

O Wave number $(v) = \frac{1}{2}$

rays

interference & diffraction

Rays

E = energy of quantum

 $\Delta x \cdot \Delta p_x \ge \frac{h}{4\pi}$

 $\Delta x \cdot \Delta p_x \ge -$

the material particle.

O Heisenberg's Uncertainty Principle

Heisenberg's Uncertainty Principle

Heisenberg uncertainty principle.

and exact momentum (or velocity) of an electron

contradicts Heisenberg uncertainty principle.

exact momentum (or velocity) of an electron

Mass/kg Name Discovery Charge Electron (e) Cathode rays $-1.6 \times 10^{-19} \,\mathrm{C}$ 9.1×10^{-31} $+1.6 \times 10^{-19} \,\mathrm{C}$ 1.67×10^{-27} Proton (p) Anode rays 0 1.67×10^{-27} Neutron (n) α particles bombarded on

Subatomic particles

Atomic no. (Z)	=	Number of protons
Mass no (A)	_	Number of protons

Electromagnetic

= Number of protons and neutrons

Isotopes = Same atomic number but different mass

number e.g. 12C 14C

O Unlike sound wave, electromagnetic waves do not require medium and

O Electromagnetic waves are characterised by the properties, frequency (v)

Visible

O Experiment supporting wave nature of electromagnetic radiation are

Planck's Quantum Law: Atoms and molecules could emit or absorb energy

O de-Broglie relationship between wavelength (λ) and momentum (P) of

Heisenberg uncertainty principle is not valid for macroscopic objects.

O Failure of Bohr model: It ignores dual behaviour of matter but also

Heisenberg uncertainty principle is not valid for macroscopic objects.

Dual behaviour of matter

It states that it is impossible to determine simultaneously, the exact position

Dual behaviour of matter

O **de-Broglie relationship** between wavelength (λ) and momentum (P) of the material

It states that it is impossible to determine simultaneously, the exact position and

Failure of Bohr model: It ignores dual behaviour of matter but also contradicts

only in discrete quantities and not in continous manner known as quantum

and wave length (λ) and travel with speed of light i.e., $c = 3 \times 10^8$ m/s

= Atoms with same mass number but different atomic number e.g. $^{14}_{7}C$ $^{14}_{7}C$

Photoelectric effect: metals were exposed to beam of light

@anjit

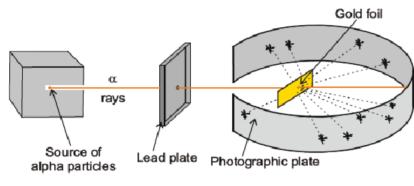
Observation of photoelectric effect

- No time lag between ejection of electrons from metal surface and striking of light beam.
- Number of ejected electrons proportional to the intensity or brightness of light.
- O Minimum frequency required to eject electron is known as threshold frequency (v_0) .
- O Einstein photoelectric equation

$$hv = hv_0 + \frac{1}{2}m_e v^2$$

erent

tomic models 🛑


The atom is of spherical shape in which positive charge is uniformly distributed and electrons are embedded in it

O Rutherford's Nuclear Model

α particle scattering experiment

O Thomson model (Plum pudding model)

Be thin sheet

Observation of experiment

- (i) Most of α ray passed through gold foil undeflected
- (ii) A small fraction of the α -particles was deflected by small angles
- (iii) A very few α -particles bounced back
- On the basis of Rutherford experiment most of the space in an atom is empty, a centre of atom is occupied by the nucleus in which positive charge is concentrated in a very small volume. The nucleus is surrounded by electrons that move around the nucleus with a very high speed in circular path called orbits while electrostatic forces of attraction held nucleus and electrons together.

O Draw back of Rutherford model

It cannot explain the stability of atom.

Bohr's model for hydrogen atom

- O Key points of Bohr's theory
- O Electron in the hydrogen atom can move in circular path of fixed radius and energy known as orbits.
- O The energy of orbit does not change with time.
- Electron moves from a lower stationary state to higher state when required amount of energy is absorbed by the electron.
- O Electron move from higher energy state to lower energy state leaving the extra energy in the form of electromagnetic waves.
- O Angular momentum of electron is quantized.

$$mvr = \frac{nh}{2\pi}$$

O Frequency of radiation absorbed or emitted

$$v = \frac{\Delta E}{h} = \frac{E_2 - E_1}{h}$$

- $r_n = \frac{52.9(n^2)}{Z} \text{ pm; radius of nth orbit}$
- O $E_n = -2.18 \times 10^{-18} \left(\frac{Z^2}{n^2}\right)$ J; energy of electron in nth orbit

Structure of atom

Micro

wave

Radio

wave

→ Atomic spectra

- The spectrum of radiation emitted by a substance that has absorbed energy is called an **emission spectrum**.
- An absorption spectrum is like photographic negative of an emission spectrum.

Line Spectrum of Hydrogen

$$\overline{v} = 109,677 \left(\frac{1}{n_1^2} - \frac{1}{n_1^2} \right) \text{cm}^{-1}$$

where \bar{v} is the wave number of spectral line in hydrogen spectrum.

Series	n_1	n_2	Spectral Region
Lyman	1	2,3	Ultraviolet
Balmer	2	3,4	Visible
Paschen	3	4,5	Infrared
Brackett	4	5,6	Infrared
Pfund	5	6,7	Infrared

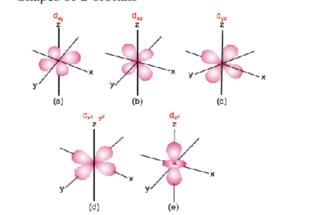
Quantum mechanical model of atom

Orbitals and quantum number

- (1) Principal quantum number 'n' determines the size and energy of orbital.
 - 1 Number of allowed orbital in a shell = n²
- (2) Azimuthal quantum number 'l' defines the three-dimeinsional shape of orbital
- For a given n, possible value of $l = 0, 1, 2 \dots (n-1)$

	Value of 1	0	1	2	3	4	5
•	Notation of subshell	s	p	d	f	g	h

- (3) Magnetic orbital quantum number 'm' gives linformation about the spatial orientation of the orbital with respect to standard set of coordinate axis.
 - For any subshell, 21 + 1 values of m are possible


	Subshell	s	p	d	f	g	h
•	Notation of orbitals	1	3	5	7	9	11

(4) Two orientations of electrons are distinguished by the **spin** quantum numbers (m_s) which can take value of

$$+\frac{1}{2}$$
 and $-\frac{1}{2}$.

Shapes of atomic orbital

O Shapes of d-orbitals

Filling of orbitals in atom

- O **Aufbau Principle:** In the ground state of the atoms, the orbitals are filled in order of their
- O The maximum number of electrons in 2a shell = $2n^2$

increasing energies.

O Hund's Rule of Maximum Multiplicity

> Pairing of electrons in degenerate orbitals take place only after each degenerate orbitals is singly filled.

O Pauli Exclusion Principle

No two electrons in an atom can have the same set of four quantum numbers.

O **Total nodes** = n - 1, angular nodes = l, radial nodes = n - 1 - 1

Energies of Orbitals

- 0 1s < 2s = 2p < 3s = 3p = 3d < 4s = 4p = 4d = 4f <(for hydrogen)
- O (n + l) rule the lower the value of (n + l) for an orbital, the lower is its energy. It two orbitals have the same value of (n + l), the orbital with lower value of n will have the lower energy for multielectron atom.
- O Energies of the orbital in the same subshell decreases with increase in the atomic number (Z_{eff})
 - $e.g. E_{2s}(H) > E_{2s}(Li) > E_{2s}(Na) > E_{2s}(K)$